Vital Chemical Engineering Interview Preparation Guide
Download PDF

Chemical Engineering Interview Questions and Answers will guide us now that Chemical engineering is the branch of engineering that deals with the application of physical science, and life sciences such as biology, microbiology and biochemistry with mathematics, to the process of converting raw materials or chemicals into more useful or valuable forms. So learn Chemical Engineering and get preparation for job of Chemical Engineering by Chemical Engineering Interview Questions and Answers.

151 Chemical Engineering Questions and Answers:

Table of Contents:

Vital  Chemical Engineering Job Interview Questions and Answers
Vital Chemical Engineering Job Interview Questions and Answers

1 :: Explain disadvantages of gear pump?

No Answer is Posted For this Question
Be the First to Post Your Answer Now

2 :: Is there any way to remove residual product left in pipes after a batch operation?

OEG Company in Osaka, Japan commercialized a device called Pushkun that runs through pipes and "pushes" out left over product. The system is particularly valuable in batch operations where product recovery is chief concern. The manufacturer claims that at one installation, the system paid for itself in four months through product recovery. System costs depend on the scale of the system, but are typically around $10,000 US (1998).

3 :: What particle sizes are electrostatic precipitators used to remove?

A. Duprey conducted testing on an electrostatic precipitator in a pulp mill. The results were published in a National Air Pollution Control Administration report called "Compilation of air Pollutant Emission Factors”.

4 :: What are flameless oxidizers?

Flameless oxidizers are used to treat volatile organic compounds (VOC) and liquid organic streams. Traditionally, these types of streams were combusted to break down the molecules. The disadvantage of this treatment method was the formation of NOx. Flameless oxidizers use electrically heated ceramic packing and a high velocity introduction system to initiate the destruction of the organic compounds into carbon dioxide and water. Once this oxidation reaction begins, it continues via self-perpetuation. Capital cost for such systems are usually about 25% less than traditional combustion systems and capacities can range from 250 to 40,000 SCFM (standard cubic feet per minute). Thermatrix Inc. is the pioneer for this technology. Visit their website below.

5 :: Are there any special considerations to be taken into account for combusting ammonia?

The heat of combustion of ammonia is 8,000 Btu per pound. There is no reason why it cannot be combusted with or without auxiliary fuel. However, ammonia combustion does result in a flue gas having a high concentration of NOx and the design of a combustion chamber for ammonia requires special conditions to mitigate or reduce the level of NOx emissions.

6 :: What are some common causes of control valve noise?

If you have excessive pressure drop across the control valve and the downstream pressure is low enough to cause the liquid to flash, a great deal of noise in the control valve can result. Excessive damage can be done as well. This is a common problem at low flows. Review the design information on the valve and the process to see if low flow may be the problem. If the valve is incorrectly sized the noise will be apparent from the day of installation. If flows have recently been changed, the valve may have been designed correctly at the time, but is too large for current operation.

7 :: How much water is lost through a commercial cooling tower system with a throughput of about 600 GPM?

This question depends on many factors. It sounds like the tower is small. A rule of thumb suggests that the tower will see an evaporation loss of about 0.1% of the circulation flowrate for each Fahrenheit degree of cooling. Other losses include drift losses (probably very small for your tower) and blow down. Blow down is simply a purge of tower water to prohibit the buildup of solids.

8 :: What is the difference between CFM (cubic feet per minute) and SCFM (standard cubic feet per minute)?

CFM and SCFM are both measures of flow rate. CFM might refer to either the flow rate of a gas or a liquid, whereas SCFM refers only to the flow rate of a gas. The same mass flow rate of a gas (i.e., lbs/minute) is equivalent to various volumetric flow rates (i.e., CFM) depending upon the gas pressure and temperature. Thus, when gas flow rates are specified, it is very important to specify at what pressure and temperature the gas was measured. When the gas flow rate is specified as SCFM, it means that the flow rate was measured at a set of standard pressure and temperature conditions.

In the USA, the most common set of standard conditions used in industry is 60 degrees Fahrenheit and one atmosphere of pressure. Note that we have stressed most common, because there are other standard conditions that may be used. It is always best to spell out what standard conditions are being used (i.e., 1200 SCFM at 60 degrees F and 1 atmosphere pressure). When gas flows are expressed simply as CFM, the reader is can only speculate as to what gas temperature and pressure apply to that flow rate ... and, because of that, the CFM flow rate cannot be converted to a mass flow rate
High-pressure steam should be limited to about 150 ft/s and low-pressure steam should be limited to about 100 ft/s.

10 :: What is the maximum recommend pipe velocity for dry and wet gases?

For dry gases, you should design for a velocity of about 100 ft/s while wet gases should be limited to about 60 ft/s.

11 :: How instrument air is continually supplied in process plant?

The instrument air supply is guaranteed by dedicated air supply with -40 oC dew point. Apart from this there is about 20 to 30 minutes of back up provided for emergencies like power failure, instrument air-generation failure, etc.

12 :: How can you keep our seawater used for heat rejection clean before entering our heat exchangers?

Seawater is used as a cooling agent in condensers and coolers. Intermittent injection of chlorine gas is used to eliminate marine growth. The system is a once through type. The band screens before the suction of the pumps are supposed to eliminate scales and other suspended materials. The band screens are not properly functioning. Cooling water flow is about 2.6 million gallons per hour.

The prescreening and mobile screens are not a sufficient protection for the recirculating water. This is a very common problem. In clean salt water the biological grow in the cooling water pipes is the main problem (mussels, barnacle, algae, etc.). After the life cycle is finished they die and blocking the condenser tubes. To solve this debris problems use self-cleaning Debris Filters (DF) directly installed in front of the waterbox of the heat exchangers.

13 :: What are some guidelines for designing for liquid and gas velocities in process plant piping?

For normal process plant design liquid pump discharges, look for velocities in the range 5-7 ft/sec. probably not a bad idea to keep design vapor velocities below 125 ft/sec. These guidelines might be applied by an engineering company for design. If you are looking at plant operation, it is common to find velocities in the 9-12 ft/sec range. Erosion problems can also complicate the answer to this question. Erosion is highly dependent on the nature of the fluid. For example, 98% H2SO4 is not corrosive to carbon steel pipe, however it very erosive at "normal design" velocities. Design criteria for 98% H2SO4 might be 0.70 ft/sec MAXIMUM. However, it is also well known that if the same 98% H2SO4 has a little emulsified hydrocarbon, it is substantially less erosive.

14 :: Is it advisable to cool a fin fan by spraying demineralized water on it?

Fin fan has carbon steel tubes with aluminum fins RESPONSE In a similar service, the fin fan suffered external corrosion when spraying it with demin water. The salt and oxygen in the air corrodes the air-cooler.

The gas is piped normally from an outside cylinder storage facility to a process control panel at approximately 60 psig. The panel-output chlorine pressure is 15 psig and a flow rate of approximately 0.03 scfm. Occasionally the flow control devices in the process panel are contaminated by what appears to be liquid chlorine. It seems that temperature variations in the iron transport pipe may have some influence on the liquid formation.

The condensation temperature of gaseous chlorine at 65 psig is 54 deg F. Thus, if your transport line is long, it is quite likely that ambient temperatures lower than 54 deg F could result in cooling the line enough to cause condensation of the chlorine gas. If you lower the transport pressure to 25 psig, the condensation temperature would be 24 deg F ..., which should significantly lower the likelihood of cold ambient temperature causing the gas to condense.

15 :: What is a good method of steam tracing large vessels?

One common approach to heat tracing projects is a "platecoil" concept. If you are unfamiliar with this type of equipment, you should visit one of the links below. Depending on your tank(s) or application, the platecoil can easily steam trace (or heat-up) your process. The method of application is simple and routinely done by sub-contractors. New heat-tracing cements have made this method even more efficient and less costly than what we had in the past. The platecoils can be pre-formed to fit your tank's cylindrical shell or elliptical heads. Flat surfaces are very easy.

Platecoils are a quick, low-cost, and safe installation. Most platecoils are found in stock, off-the-shelf in stainless construction. I have used them to winterize tanks as well as to reduce viscosities in heavy polyols and other high molecular weight compounds while processing or during storage. One of the best features of this type of tracing is that it is not invasive -- depending on the application, you may be able to install the platecoils while the tank is operating. Still another interesting feature is that you can use them as an assembly inside of tanks --- as internal heaters. You can use steam, Dowtherm, hot oil or process streams inside the coils. You can easily insulate over them to conserve heat or to protect personnel. Another resource would be a publication by Spirax Sarco (link below). This book contains a lot of information on steam tracing, best practices, traps, regulating valves.

16 :: How can you control the pH level in our cooling water with respect to ammonia contamination?

A cooling tower in a urea manufacturing facility is experiencing very high ammonia levels (200 to 300 ppm) in the cooling water. The ammonia level fluctuates with wind direction.
RESPONSE if your cooling water has 200-300 ppm of ammonia, you have a problem, which must be solved. You may have a water-cooled process heat exchanger, which has a tube leak that is leaking ammonia into your cooling water. Or the ambient air in your urea plant has a significant ammonia content (from various fugitive leak sources such as piping flanges, control valve packing glands, pump and compressor seals, etc.) and when the wind blows that ambient air into the cooling tower, the ammonia is absorbed in the cooling water.
In either event, you have an unhealthy situation, which must be corrected. Contacting a company that is specialized in these types of water treatment problems may be a wise decision (Ex/ Nalco).

17 :: We have some pieces of metals that have been "powder coated", how does that work?

Powder coatings are similar to paint, but they are usually much more durable. Rather than adding a solvent to the pigments and resins in paint, as is typically the case, powder coatings are applied to the surface in a fine granular form. They are typically sprayed on so that they stick to the surface. Once the surface has been sufficiently spray coated, the piece is baked at high temperatures, and the pigment and resins pieces melt and form a durable, color layer.

18 :: What industries require filtered compressed air?

Almost every chemical process, power plant food processing etc. plant has some type of air-operated device... from control valves to air operated pumps... and all have an air compressor delivering filtered air.

19 :: What are some good tank mixing rules of thumb?

For fluid with viscosities under 10,000 Cp, baffles are highly recommended. There should be four baffles, 90 degrees apart. The baffles should be 1/12th the tank diameter in width and should be spaced off the wall by 1/5th the baffle width. The off- wall spacing helps to eliminate dead zones. If baffles are used, the mixer should be mounted in the vertical position in the center of the tank. If baffles are not used, the mixer should be mounted on an angle, ~15 degrees to the right and positioned off center. This breaks up the symmetry of the tank and simulates baffles although not nearly as good as baffles.

The purpose of baffles is to prevent solid body rotation all points in the tank are moving at the same angular velocity and no top to bottom turnover. The formation of a large central vortex is a characteristic of solid body rotation. However, small vortices that travel around the fluid surface, collapse, and reform are more a function of the level of agitation.

20 :: What is a good source of equations for calculating discharge flowrates from accidental releases?

If you are interested in the calculation of discharge flow rates from accidental releases, read the online technical article "Source Terms for Accidental Discharge Flow" at the website below. It provides the equations used for a variety of common types of accidental gas or liquid releases and explains how to use them.

21 :: What is the definition of "good" cooling tower water?

Generally speaking, cooling tower water should have a pH between 6 and 8, a chloride content no more than 750 ppm, a sulfate content (SO4) below 1200 ppm, and a sodium bicarbonate (NaHCO3) content below 200 ppm. Additionally, cooling tower water should not be heated past 120 °F to avoid plating out of treatment chemicals in process coolers.

In addition, if free chlorine is used for biological growth control, it should be added intermittently with a free residual not to exceed 1 ppm and this should be maintained for short periods.

22 :: When specifying a cooling tower, should I look up historic wet bulb temperatures for my area or should I take measurements?

If this is a new installation, look up historical wet bulb temperatures for area and be sure to report them to the cooling tower manufacturer as "ambient wet bulb temperatures". The manufacturer will adjust this temperature accordingly to estimate an "entering wet bulb temperature".

If you have an existing tower that is to be replaced, take several wet bulb temperature measurements near the air inlet during the hottest months. Report this as the "entering wet bulb temperature" to the tower manufacturer.

The difference between the ambient and the entering wet bulb temperatures is to account for wet recirculation from the tower exit back to the tower entrance. The entering wet bulb temperature always higher than the ambient wet bulb temperature.

23 :: IS there a rule of thumb to estimate the footprint of a cooling tower during design phase?

Over the years, this one has seemed to stand the test of time:

Every million Btu/h of tower capacity will require approximately 1000 ft2 of cooling tower basin area.

24 :: What could be a possible cause for sudden foaming in a cooling tower?

Assuming that no other changes have been made, especially to the water treatment chemicals, the most common outcome to this mystery is a leaking heat exchanger.

Begin a systematic check of all of the heat exchangers that use the cooling tower water and inspect them thoroughly for leaks. Even small amounts of some chemicals can cause big foaming problems in the tower. In addition, not all of these components will set off a conductivity alarm.

25 :: What factors should be compared when evaluating cooling tower bids?

Examining the following factors should allow for a reasonable evaluation of cooling towers:

1) Purchased cost

2) Installed cost

3) Fan energy consumption

4) Pump energy consumption

5) Water use

6) Water treatment costs

7) Expected maintenance costs

8) Worker safety requirements

9) Environmental safety

10) Expected service life
Chemical Engineering Interview Questions and Answers
151 Chemical Engineering Interview Questions and Answers